Journal of Organometallic Chemistry, 192 (1980) 115–127 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE CHEMISTRY OF HETERO-ALLENE AND -ALLYLIC DERIVATIVES WITH RHODIUM AND IRIDIUM

III *. ELIMINATION OF HETERO-ALLENE MOLECULES FROM RHODIUM(I)-HETERO-ALLYLIC-PHOSPHINE COMPLEXES. THE FIRST COMPLEX WITH η^2 -COORDINATED Ph₂PS⁻

D.H.M.W. THEWISSEN **

Department of Inorganic Chemistry, Catholic University, Toernooiveld, 6525 ED Nijmegen (The Netherlands)

(Received November 12th, 1979)

Summary

Carbon monoxide causes elimination of the hetero-allene molecules ptolN=C=Nptol and Ph--N=C=O in Rh(PPh₃)₂[Ph₂PC(Nptol)Nptol] and Rh(PPh₃)₂[Ph₂PC(NPh)O], respectively. The resulting complex in both cases is [Rh(CO)₂(PPh₃)(PPh₂)]_n.

In the reaction of RhCl(PPh₃)₃ with Ph₂P(S)C(Nptol)NHptol or Ph₂P(S)-C(O)NHPh in the presence of a base, a similar elimination occurs yielding the liberated heterocumulene and Rh(PPh₃)₂(SPPh₂). This complex is the first example of a species with a side-on coordinated Ph₂PS-molety. We have also prepared this compound and other species, containing η^2 -SPPh₂, via direct interaction of RhCl(PPh₃)₃ and IrCl(PPh₃)₂(C₈H₁₄) with Ph₂P(S)H. Upon reaction with CO, the chelating PPh₂ group is displaced by CO to give complexes with an end-on coordinated Ph₂PS⁻ ligand.

Finally, $Rh(PPh_3)_2(SPPh_2)$ incorporates three moles of PhNCS, one by insertion and two by disproportionation, to yield $Rh(PPh_3)(PhNC)(PhNCS_2)$ -[Ph₂P(S)C(S)NPh].

Introduction

 Ph_2P^- and Ph_2PS^- can add to hetero-allene molecules X=C=Y (X, Y = S, NR, 0) by nucleophilic attack at the central C atom to give a large number of hetero-allylic derivatives, as shown in Fig. 1.

^{*} For part II see ref. 2.

^{**} Present address: O.C.I., T.N.O., Croesestraat 79, Utrecht, The Netherlands.

Found (caled.) (%) Colour ANALYTICAL DATA Compound

TABLE 1

No.	Compound	Colour	Found (cal	cd.) (%)					Mol. weight	
			U	H	0	G	ß	ß	:	
Id	[Rh(PPh_2)(PPh_3)(CO)_2]_2 · H_2O	dark green	62,38	4,65	6,45	1	10.10	1	1	
			(62,44)	(4.26)	(6.50)	ł	(10.08)	ł	ł	
IIIc	Rh(SPPh ₂)(PPh ₃) ₂	orange brown	68.07	4.91	ł	I	10,80	3.61	827 4	
	1 1 1		(68.25)	(4.78)	ł	I	(11.02)	(3.79)	(844)	
IV	RhCl(H)(PPh ₃) ₂ (SPPh ₂) · C ₆ H ₆	yellow	68,59	6,19	I	3,69	9.52	3.24	469 ^b	
			(67.61)	(4.94)	i	(3.70)	(0.70)	(3.34)	(479)	
~	IrCl(H)(PPh ₃) ₂ (SPPh ₂) · C ₆ H ₆	yellow	62.49	4.69	I	3,31	8,15	3.02	677 ^b	
			(61.80)	(4.62)	١	(3.29)	(8.88)	(3.05)	(574)	
١٧	Rh(PPh ₃) ₂ (CO)(SPPh ₂)	yellow	67.12	4.71	i	i	I	i	1	
	: :		(67.43)	(4.62)	i	I	1	1	1	
^a Mol. wei	ght determined osmometrically in acete	one. ^b Mol. weight d	etermined os	nometrically	in CH ₂ Cl ₂ .	M/2 calc.:	479 for IV,	574 for V.	-	

Fig. 1. The unsaturated hetero-allylic anions.

These anions, containing three hetero atoms with coordinating properties, are ambidentate. The complexation of a number of these chelates towards rhodium(I)- and iridium(I)-phosphine complexes are reported in previous papers [1-4]. Complexes of the type M(PPh_3)₂[X--C(Z)-Y] and M(PPh_3)(CO)[X--C(Z)-Y] (M = Rh, Ir) can be prepared in this way. However, in some cases the complexes are not sufficiently stable to be isolated, and a subsequent reaction occurs in which the heterocumulene is eliminated. In this paper the behaviour of a few of these complexes is discussed. In particular, attention is paid to one of the products, Rh(PPh_3)₂(SPPh_2), resulting from the elimination.

In addition we have synthesized some $M(SPPh_2)$ complexes (M = Rh, Ir) and investigated their structures. In complexes of Ph_2PS^- , this ligand has previously been found to coordinate either end-on via sulfur [9], or to bridge two metal atoms via P and S [10-12]. In this paper we describe a different mode of bonding.

Experimental

IR spectra were measured on a Perkin Elmer 283 spectrophotometer ($4000-200 \text{ cm}^{-1}$), mainly in CsI pellets.

 $^{31}P{^{1}H}$ NMR spectra were recorded on a Varian XL-1000 FT spectrometer at 40.5 MHz, using the deuterated solvent as internal look. Solutions for NMR measurements were prepared in a glove-box.

C, H and N analyses were carried out at the micro-analytical department of this university. Other elemental analysis and molecular weight determinations were performed by Prof. Dipl.-Ing. Dr. H. Malissa and G. Reuter, Analytische Laboratorien, Elbach über Engelskirchen, West-Germany. Analytical data are given in Table 1.

Reactions were carried out at room-temperature in analytical grade solvents under nitrogen.

RhCl(PPh₃)₃ [5], [IrCl(C₈H₁₄)₂]₂ [6], Rh(PPh₃)₂[Ph₂PC(Np-tol)Np-tol] and Rh(PPh₃)₂[Ph₂PC(NPh)O] [2], Ph₂P(S)H [7], and Ph₂P(S)C(Np-tol)NHp-tol and Ph₂P(S)C(O)NHPh [8] were prepared according to literature procedures.

IR AN	D ³¹ P { ¹ H} NMR DATA OF THE INTERME	DIATE COMPLEXE	Š		
Compl	lex	δ(P-chelate) (ppm) ^d .	l <i>J</i> (Rh—P _{chelate}) (Hz)	ν(C≡O) (am ⁻¹)	µ(C=E) (cm ^{−1})
Ia Ib	Rh(PPh ₃) ₂] Ph ₂ PC(NPh)O] ^b Rh(PPh ₃)(CO)[Ph ₂ PC(NPh)O] ^c	-3.3	108	1972vs	1624s (v(C=0)) 1640m(v(C=0)) 4755-744-2 Physec-0)
2 P -	Rh(PPh ₃)(CO) ₂ (PPh ₂)(PhNCO) ^c [Rh(PPh ₃)(CO) ₂ (PPh ₂)] _n ^b DL(PPh ₂)(CO) ₂ (PPh ₂)] _n ^b	-46.5	155 (multiplet)	1900vs 1947vs 1900vs 1947vs	1/30m (P(1]FnN-C0)) 1668vs (P(C=N))
	Rh(PPh3)(CO)[Ph2PC(Nptol)Nptol] ^c Rh(PPh3)(CO)[Ph2PC(Nptol)Nptol] ^c			1970vs	1569vs (v(C=N))

TABLE 2

^a For PPh₃, see Table 3. ^b Measured in Csl pellets.^c Measured in CH₂Cl₂ solution.^d In ppm relative to 0=P(OMe)₃ (TMP) internal reference, upfield shifts positive.

Preparation of $[Rh(PPh_2)(PPh_3)(CO)_2]_2 \cdot H_2O$ (Id)

On passing CO during 5 minutes through a solution of 0.3 mmol Rh(PPh₃)₂-[Ph₂PC(Np-tol)Np-tol] or Rh(PPh₃)₂[Ph₂PC(NPh)O] in 30 ml benzene the initial orange-yellow colour changed first to yellow and within an hour via brown to dark-green. After a few hours the green precipitate was filtered off, washed with benzene and diethyl ether, and dried in vacuo. Yield: 55%.

Preparation of Rh(PPh₃)₂(SPPh₂) (IIIc)

a) 0.3 mmol of $Ph_2P(S)C(Np-tol)NHp$ -tol was added to a solution of 0.3 mmol of $RhCl(PPh_3)_3$ in 30 ml anhydrous benzene. An equimolar quantity of n-BuLi was then injected. After stirring for 24 hours the mixture was filtered. After precipitation with n-hexane the complex was filtered off, washed with small portions of ethanol and diethyl ether, and dried in vacuo. Yield: 30%.

b) 0.3 mmol $Ph_2P(S)C(O)NHPh$ was added to a solution of 0.3 mmol RhCl-(PPh₃)₃ in 30 ml benzene. After 20 minutes a small excess of Et₃N was added. After 24 hours the Et₃N · HCl was filtered off. The complex was precipitated with n-hexane, filtered off, washed with small portions of ethanol and diethyl ether, and dried in vacuo. Yield: 35%.

c) 0.3 mmol Ph₂P(S)H was added to a solution of 0.3 mmol RhCl(PPh₃)₃ in 30 ml waterfree benzene. An equimolar quantity of n-BuLi was added. After two hours, the complex was precipitated with n-hexane, filtered off, washed with small portions of ethanol and diethyl ether, and dried in vacuo. Yield: 75%.

Preparation of $Rh(H)(Cl)(PPh_3)_2(SPPh_2) \cdot C_6H_6(IV)$

0.3 mmol $Ph_2P(S)H$ was added to a solution of 0.3 mmol $RhCl(PPh_3)_3$ in 30 ml benzene. Within 15 minutes the colour changed from red to bright yellow. n-Hexane was added and the precipitate was filtered off, washed with small portions of benzene and diethyl ether and dried in vacuo. Yield: 90%.

Preparation of $Ir(H)(Cl)(PPh_3)_2(SPPh_2) \cdot C_6H_6(V)$

0.3 mmol $Ph_2P(S)H$ was added to a solution of 0.15 mmol $[IrCl(C_8H_{14})_2]_2$ and 0.6 mmol PPh_3 in 30 ml benzene. In 20 minutes the colour changed from red to yellow. After addition of n-hexane the precipitate was filtered off, washed with small portions of benzene and diethyl ether, and dried in vacuo. Yield: 85%.

Preparation of $Rh(PPh_3)_2(CO)(SPPh_2)$ (VI)

CO was passed for 2 minutes through a solution of $Rh(H)(CI)(PPh_3)_2(SPPh)_2$ in 20 ml CH_2Cl_2 , a yellow precipitate formed during about 30 minutes. After addition of n-hexane the complex was filtered off, washed with ethanol and diethylether, and dried in vacuo. Yield: 90%.

The reaction of $Rh(PPh_3)_2[Ph_2PC(NR)Y]$ (Y = Np-tol, R = p-tol; Y = O, R = Ph) with CO

We investigated the reaction between $Rh(PPh_3)_2[Ph_2PC(NPh)O]$ (Ia) and CO by means of IR and ${}^{31}P{}^{1}H$ NMR spectroscopy. Table 2 gives the relevant

•••						
Com	plex	0 h	0.5 h	2 h	20 h	45 h
Ia	Rh(PPh3)2[Ph2PC(NPh)O]	++	+			
Ib	Rh(PPh ₃)(CO)[Ph ₂ PC(NPh)O]	<u> </u>	++	++	+	+
Ic	Rh(PPh3)(CO)2(PPh2)(PhNCO)	—	-	•	٠	•
Id	[Rh(PPh ₃)(CO) ₂ (PPh ₂)] _n		-	~	+	++
	free PhNCO	-	-		+	·++
Colc	ur	yellow	yellow- Orange	brown	green	green + precipitate of Id
δ (P E	Ph3) (ppm) (free and coordinated)		-11.0	4.6	2.0	0.9

TABLE 3

COMPLEXES AND INTERMEDIATES PRESENT AT DIFFERENT REACTION TIMES

++ > 60%, + 20-60%, ~ 5-20%, • present in very small quantity, - not present.

IR absorptions and the ³¹P NMR parameters of the intermediate complexes present in the reaction mixture, and Table 3 shows the amounts of these intermediates as a function of time.

When less than one equivalent CO is introduced into a solution of $Rh(PPh_3)_2$ -[Ph₂PC(NPh)O] in benzene or dichloromethane the yellow-orange Rh(PPh₃)-(CO)[Ph₂PC(NPh)O] (Ib) is formed by substitution of PPh₃ by CO. This complex is analogous to the complexes $Rh(PPh_3)(CO)[X-C(Z)-Y]$, described in our earlier papers [2,3]; ν (C=O) at 1972vs cm⁻¹ and ν (C=O) at 1640m cm⁻¹ are consistent with the values usually found for this type of compound. The ${}^{31}P$ NMR spectrum indicates dynamic behaviour due to exchange of free and coordinated PPh₃. The PPh₃ resonance is broad and exhibits no ${}^{1}J(Rh-P)$ coupling. ${}^{1}J(\text{Rh}-P_{\text{chelate}})$ amounts to 108 Hz. Complex Ib defies isolation. It reacts with a second molecule of CO to give $Rh(PPh_3)(CO)_2[Ph_2PC(NPh)O]$; the colour changes slowly via brown to green. In the strained Rh-P-C-N four membered ring the P-C and Rh-N bonds are the weakest. By breaking these bonds, i.e. by elimination induced by the second CO molecule, a complex with a side-on coordinated PhN=C=O molecule can be generated (Ic). In the IR spectrum, recorded after two hours, a new absorption is observed at 1735 cm^{-1} , which we assign to ν (C=O) of the five coordinate intermediate Rh(PPh₂)- $(PPh_3)(CO)_2(\eta^2-PhN=C=O)$ (Ic). For the four-coordinate Rh(Cl)(PCV_1)_2-(PhN=C=O) ν (C=O) was assigned at 1842s cm⁻¹ by Van Gaal et al. [13]. These authors predict a substantial lowering of this frequency in five coordinate Rh complexes. The absorption at 1735 cm^{-1} , observed for Ic, is about 100 cm^{-1} higher than the reported value for $\nu(C=O)$ of a $[RNC(O)NR]^{2-}$ fragment, which may result from a coupling of two Ph-N=C=O entities [14-16], so that the formation of such derivatives can be excluded. Subsequently the η^2 -coordinated hetero-allene molecule is eliminated from the coordination sphere, as is indicated in the IR spectrum by the formation of free PhN=C=O. Fig. 2 shows a possible reaction pathway, as discussed above.

The reaction between $Rh(PPh_3)_2[Ph_2PC(Np-tol)Np-tol]$ and CO in benzene proceeds similarly. ptolN=C=Np-tol is eliminated and the resulting Rh complex, formed in this reaction, is also Id.

The green compound Id analyses for $\{[Rh(CO)_2(PPh_2)(PPh_3)]_2 \cdot H_2O\}_n$. We

Fig. 2. The probable pathway for the reaction between Rh(PPh₃)₂[Fn₂PC(NPh)O] and CO.

suggest a structure as given below, in which *n* equals 2, but we could not determine the molecular weight because it is insoluble in benzene and decomposes slowly in dichloromethane or chloroform to yield RhCl(CO)(PPh₃)₂ among other products. In Id the rhodium is five coordinate as indicated by ν (CO) at 1947 and 1900 cm⁻¹:

The reaction of RhCl(PPh₃)₃ with Ph₂P(S)C(Y)NHR (Y = Np-tol, R = p-tol; Y = O, R = Ph) in the presence of a base

In earlier papers we reported that the reactions of $RhCl(PPh_3)_3$ with the molecules $Ph_2P(S)C(S)NHPh$ [2] and $Ph_2P(O)C(S)NHPh$ [3] in the presence of a base, e.g. Et₃N gave the stable complexes $Rh(PPh_3)_2[Ph_2P(S)C(S)NPh]$ and $Rh(PPh_3)_2[Ph_2P(O)C(S)NPh]$, respectively. The ligands are coordinated to Rh by S(P) and S and by O(P) and S in five membered chelate rings.

When RhCl(PPh₃)₃ is treated with Ph₂P(S)C(N*p*-tol)NH*p*-tol and an equimolar quantity n-BuLi or with Ph₂P(S)C(O)NHPh in the presence of a small excess of Et₃N, the complexes Rh(PPh₃)₂[Ph₂P(S)C(N*p*-tol)N*p*-tol] (IIIa) and Rh(PPh₃)₂[Ph₂P(S)C(NPh)O] (IIIb) are formed as a first intermediate, in which the hetero-allylic ligands coordinate through S(P) and N. After standing for a short time both complexes undergo fairly rapid elimination of the heteroallene molecules *p*-tolN=C=N*p*-tol and Ph—N=C=O respectively, as observed by means of IR spectroscopy. The elimination is probably induced by the weak *N* coordinate three-valent phosphorus to the central atom of the X=C=Y fragment. We suppose the mechanism of these eliminations to be analogous to

those discussed in the previous section. The compound IIIc, which results from both reactions, analyses for Rh(PPh₃)₂(SPPh₂). IIIc appears to be monomeric in acetone. The absorption at 513s cm⁻¹ in the IR spectrum is assigned to ν (P=S), which agrees with an involvement of S in the coordination to the metal [2,11,17]. The ³¹P{¹H} NMR spectrum (see Table 5 and Fig. 3) indicates three inequivalent phosphorus nuclei, which means that the P atom of the Ph₂PS⁻ moiety is coordinated to Rh. In particular the small value of ¹J(Rh—P_a) of 119 Hz demonstrates the incorporation of P_a into a three membered ring system. We conclude from these facts and from the requirement for four coordination for the Rh^I center, that the Ph₂PS⁻ ligand is coordinated side-on. Previously, R₂PS⁻ has been reported to complex with transition metals either end-on, through S [9], or by bridging two metal atoms through S and P [10—12], forming binuclear species. IIIc is the first example of a complex in which a

IR ABS	ORPTIONS IN cm ⁻¹ . SPECTRA MEASURI	ED IN CSI PELLETS			
Code	Complex	ν(C=E) ^b	ν(P=S)	ν(M—H)	ν(M-Cl)
IIIa '	Rh(PPh ₃) ₂ [Ph ₂ P(S)C(Np-tol)Np-tol] ^a	1546s (v(C=N))	521m		
шь	Rh(PPh ₃) ₂ [Ph ₂ P(S)C(NPh)O]	1618s (v(C=O))	512m		
IIIc	Rh(PPh ₃) ₂ (SPPh ₂)		513s		
IV	Rh(H)(Cl)(PPh ₃) ₂ (SPPh ₂) · C ₆ H ₆		512s	2118m	262vw
v	$Ir(H)(Cl)(PPh_3)_2(SPPh_2) \cdot C_6H_6$		511s	2233m	263vw
VI	Rh(CO)(PPh ₃) ₂ (SPPh ₂)	1971 vs ⊭(C≡O)	516m		

TABLE 4				
IR ABSORPTIONS IN cm^{-1} .	SPECTRA	MEASURED	IN CsI	PELLET

^a Measured in C_6H_6 solution. ^b E represents the exocyclic hetero atom.

TABLE 6 ³¹ H { ¹ H} NMR PARAMETERS										
Complex	Code	δ(Pa)	lJ(Rh—Pa)	δ(Pb)	¹ J(Rh—Рb)	b(Pc)	¹ J(Rh—Pc)	² J(Pa-Pb)	2J(Pa—Pc)	² J(Pb—Pc)
Ph ₃ P ^C Rh	IIIc	-55.6	119	-44.1	210	-37.6	171	28 cis	246 trans	29 cls
Ph ₃ P _b a										
Ph ₃ P ^C Cl	i			1	÷	1			-	
	2	-49.0	82	39,6	160	26,5	125	20 cis	347 trans	0 cis
Ph ₃ P'b H a		² J(Pa	H) = 14	2]	(PbH) = 12	2	(Pc—H) = 16			
Ph ₃ P ^c Cl S										
	>	-17.6		-4.2		+2,0		1 8 c/s	309 trans	0 cls
Ph ₃ P ^A PPh ₂		no ² /	(P—H) coupling c	constants o	bserved					

δ in ppm relative to 0=P(0Me)₃ (TMP), internal reference; upfield shift positive; J in Hz, Solvent: CD₂Cl₂.

123

TABLE 6 ¹ H NMR SPECTROSCOPIC DATA]
Gomplex	β(M-H)	Intensity ratio	δ(H-arom)	Int M—H Int H-arom	¹ J(Rh—H)	2J(P[-F	() (i = a, l	(o 'q
Ph ₃ P H Pph ₂ Pph ₂ C C C C C C C C C C C C C C C C C C C	-17.6	quasi sextet 1 : 3 : 4 : 4 : 3 : 1	7.1—7.5 multiplet	0,020	G	12 (P _c)	10 (Pa)	10 (P _b)
Ph ₃ P Ph ₃ P Cl Cl Cl Cl Cl Cl Cl	-21.3	quasi sextet 1 : 1 : 2 : 2 : 1 : 1	7.2—7.5 multiplet	0,021		16 (P _C)	16 (Pa)	12 (P _b)

 δ in ppm relative to TMS. J in Hz. Spectra measured in $\text{CD}_2\text{Cl}_2.$

l

Fig. 4. The structure of Rh(PPh₃)₂(SPPh₂).

Fig. 5. The structure of M(H)(Cl)(PPh₃)₂(SPPh₂) (M = Rh, Ir).

coordinated R_2PS^- fragment is coordinated in an η^2 -mode (see Fig. 4).

In order to support our conclusions we attempted an independent synthesis of Ph_2PS^- complexes by direct interaction of $RhCl(PPh_3)_3$ with $Ph_2P(S)H$ in benzene. From this reaction the complex $Rh(H)(Cl)(PPh_3)_2(SPPh_2)$ (IV) can be easily obtained. We have also prepared the analogous $Ir(H)(Cl)(PPh_3)_2(SPPh_2)$ (V) from IrCl(PPh₃)₂(C₈H₁₄) and Ph₂P(S)H. Molecular weight determinations point to monomeric IV and V. The IR spectra show $\nu(Rh-H)$ at 2118m cm⁻¹ and v(Ir-H) at 2233 m cm⁻¹, whereas the v(M-Cl) absorptions are assigned at 262vw cm⁻¹ for IV and 263vw cm⁻¹ for V; ν (P=S) is observed at 512s cm⁻¹ for IV and at 511s cm⁻¹ for V. These values indicate again η^2 -coordination of Ph_2PS^- . Tables 5 and 6 give the ${}^{31}P{}^{1}H$ NMR and ${}^{1}H$ NMR spectroscopic data. The ³¹P NMR parameters of IV and V are in agreement with three inequivalent P atoms. The value of ${}^{1}J(Rh-P_{a})$ of 82 Hz confirms the η^{2} -coordination of the Ph₂PS⁻ moiety. ${}^{2}J(PPh_{3}b-PPh_{3}c)$ of square planar cis Rh^I (PPh₃)₂[X-C-(Z)-Y] complexes varies from 35-50 Hz [2]. The value of ${}^{2}J(PPh_{3}b-PPh_{3}c)$ of $Rh^{I}(PPh_{3})_{2}(\eta^{2}-SPPh_{2})$ is somewhat smaller. We ascribe this to the P-Rh--P angle which is larger than 90°. We draw a parallel with the P-Pt-P angle and $^{2}J(P-P)$ in Pt(PPh_{3})₂(η^{2} -A=B) compounds, which have an angle of comparable size and also a small ${}^{2}J(P-P)$. A weaker M- n^{2} -ligand interaction is expected in the $Rh^{III}(SPPh_2)$ complexes compared with the $Rh^{I}(SPPh_2)$ compounds. This is accompanied with a larger PPh₃-Rh-PPh₃ aperture angle (called the "interligand angle effect" by S. Otsuka [18]) and consequently a still smaller ^{2}J - (PPh_3b-PPh_3c) coupling constant. Actually in compounds IV and V $^2J(PPh_3b-PPh_3c)$ $PPh_{3}c) \approx 0.$

In the ¹H NMR spectra the hydride signals are observed at -17.6 ppm (Rh) and at -21.3 ppm (Ir) as quasi-sextets. The values of ${}^{2}J(P_{i}-H)$ (i = a, b, c) of IV, read from the ¹H NMR spectrum, are slightly smaller than the values from the ³¹P NMR spectrum. The ³¹P NMR spectrum of V does not show any ${}^{2}J(P_{i}-H)$ couplings, whereas the values from the ¹H NMR spectrum are larger than the values of ${}^{2}J(P_{i}-H)$ of the analogous Rh complex. The intensity ratio Int M-H/Int. H_{arom} indicates that about one molecule C₆H₆ must be present in the complexes.

Upon standing for a few days IV is converted into $Rh(PPh_3)_2(SPPh_2)$ by loss of HCl. IIIc can also be prepared directly from $RhCl(PPh_3)_3$ and $LiP(S)Ph_2$. We were not able to obtain the good crystals required for an X-ray structure determination of either IV, V or IIIc. However, on the basis of the molecular weight determinations and the spectroscopic features the η^2 -coordination of the Ph_2PS⁻ ligand in IIIc seems fairly reliable.

Fig. 6. The reaction at elevated temperature between Rh(PPh₃)₂(SPPh₂) and PhNCS.

On passing CO through a solution of Rh(H)Cl)(PPh₃)₂(SPPh₂), or Rh(PPh₃)₂-(SPPh₂), the carbonyl complex Rh(CO)(PPh₃)₂(SPPh₂) (VI) is formed, in which compound the Ph₂PS⁻ group is coordinated end-on via S to Rh. This compound was previously characterised and reported by Marsala et al. [9]. In the complexes Rh(PPh₃)₂[Ph₂P-A], in which [Ph₂P-A] represents a hetero-allylic ligand coordinating through P and the hetero atom A, the PPh₃ ligand *trans* to A, i.e. the phosphine which experiences the smallest *trans*-influence, is displaced by CO. In the present case on the contrary, P_{chelate} is substituted, and CO is probably *trans* to Ph₂PS⁻.

Insertion of Ph-N=C=S in the Ph₂PMS system

Rh(PPh₃)₂(SPPh₂) (IIIc) is formed from Rh(PPh₃)₂[Ph₂P(S)C(Np-tol)Np-tol] or Rh(PPh₃)₂[Ph₂P(S)C(NPh)O] by elimination of p-tolN=C=Np-tol or PhN= C=O, respectively. We have already remarked that this tendency to elimination is probably connected with the weak N coordination of the hetero-allylic ligand. Since e.g. Rh(PPh₃)₂[Ph₂P(S)C(S)NPh] is a stable complex, it should be possible to synthesize this complex from IIIc by insertion of Ph—N=C=S. We carried out this reaction by refluxing a mixture of IIIc and a large excess of Ph—N=C=S in benzene during two hours. From the resulting mixture Rh(PPh₃)(PhNC)-(PhNCS₂)[Ph₂P(S)C(S)NPh] can be isolated as the main product (see Fig. 6). We previously prepared this compound by the reaction between Rh(PPh₃)₂[Ph₂-P(S)C(S)NPh] and an excess of Ph—N=C=S, in which the hetero-allene molecules undergo a disproportionation [19]. In the present reaction insertion occurs together with disproportionation. Experiments with varying ratios of Ph—N=C=S/Rh revealed no preference for either insertion or disproportionation.

The overall reaction is the incorporation of three molecules of Ph-N=C=S. The reaction is well understood in view of the knowledge of the insertion and disproportionation properties of hetero-allenes.

Acknowledgements

The author wishes to thank Prof. Dr. Ir. J.J. Steggerda, Dr. H.L.M. van Gaal and Dr. J. Willemse for stimulating discussions, Mr. J. van Kessel for recording the ³¹P NMR spectra, Mr. H. Brinkhof for measuring the ¹H NMR spectra and Mr. P.J.J. Koonen for performing C, H and N analyses.

References

- 1 D.H.M.W. Thewissen and A.W. Gal, Proceedings of the Conference on Rhodium in homogeneous Catalysis, Veszprém, 1978, pp. 6–13.
- 2 D.H.W.M. Thewissen, H.P.M.M. Ambrosius, H.L.M. van Gaal and J.J. Steggerda, J. Organometal. Chem., 192 (1980) 101.
- 3 A.W. Gal, J.W. Gosselink and F.A. Vollenbroek, J. Organometal. Chem., 142 (1977) 357.
- 4 A.W. Gal and F.H.A. Bolder, J. Organometal. Chem., 142 (1977) 375.
- 5 J.A. Osborn and G. Wilkinson, Inorg. Synth., 10 (1967) 67.
- 6 A. van der Ent and A.L. Onderdelinden, Inorg. Synth., 14 (1973) 94.
- 7 G. Peters, J. Amer. Chem. Soc., 82 (1960) 4751.
- 8 D.H.M.W. Thewissen and H.P.M.M. Ambrosius, Rec. Trav. Chim. Pays-Bas, to be published.
- 9 V. Marsala, F. Faraone and P. Piraino, J. Organometal. Chem., 133 (1977) 301.
- 10 K.P. Wagner, R.W. Hess, F.M. Treichel and J.C. Calabrese, Inorg. Chem., 14 (1975) 1121.
- 11 E. Lindner and B. Schilling, Chem. Ber., 110 (1977) 3889.
- 12 E. Lindner and H. Dreher, J. Organometal. Chem., 105 (1976) 85.
- 13 H.L.M. van Gaal and J.P.J. Verlaan, J. Organometal. Chem., 137 (1977) 93.
- 14 T.A. Manuel, Inorg. Chem., 3 (1964) 1703.
- 15 J.A.J. Jarvis, B.E. Job, B.T. Kilbourn, R.H.B. Mais, P.G. Owston and P.F. Todd, J. Chem. Soc. Chem. Commun., (1967) 1149.
- 16 S.D. Robinson and A. Sahajpal, J. Organometal. Chem., 164 (1979) C9.
- 17 E. Lindner and W.P. Meyer, J. Organometal. Chem., 67 (1974) 277.
- 18 S. Otsuka, Proceedings IXth ICOMC, Dijon, 1979, p. S14.
- 19 D.H.M.W. Thewissen and H.L.M. van Gaal, J. Organometal. Chem., 172 (1979) 69.

·