Journal of Organometallic Chemistry, 192 (1980) 115-127
(C) Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

THE CHEMISTRY OF HETERO-ALLENE AND -ALLYLIC DERIVATIVES WITH RHODIUM AND IRIDIUM

III *. ELIMINATION OF HETERO-ALLENE MOLECULES FROM RHODIUM(I)-HETERO-ALLYLIC-PHOSPHINE COMPLEXES. THE FIRST COMPLEX WITH $\boldsymbol{\eta}^{2}$-COORDINATED Ph ${ }_{2}$ PS $^{-}$

D.H.M.W. THEWISSEN **
Department of Inorganic Chemistry, Catholic University, Toernooiveld, 6525 ED Nijmegen (The Netherlands)

(Received November 12th, 1979)

Summary
Carbon monoxide causes elimination of the hetero-allene molecules p tolN $=\mathrm{C}=\mathrm{N} p$ tol and $\mathrm{Ph}-\mathrm{N}=\mathrm{C}=\mathrm{O}$ in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{N} p\right.$ tol $) \mathrm{N} p$ tol $]$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{NPh}) \mathrm{O}\right]$, respectively. The resulting complex in both cases is $\left[\mathrm{Rh}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PPh}_{2}\right)\right]_{n}$.

In the reaction of $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ with $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{N} p$ tol $) \mathrm{NH} p$ tol or $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S})$ $\mathrm{C}(\mathrm{O}) \mathrm{NHPh}$ in the presence of a base, a similar elimination occurs yielding the liberated heterocumulene and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)$. This complex is the first example of a species with a side-on coordinated $\mathrm{Ph}_{2} \mathrm{PS}$-moiety. We have also prepared this compound and other species, containing $\eta^{2}-\mathrm{SPPh}_{2}$, via direct interaction of $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{IrCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)$ with $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{H}$. Upon reaction with CO, the chelating PPh_{2} group is displaced by CO to give complexes with an end-on coordinated Ph_{2} PS $^{-}$ligand.

Finally, $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)$ incorporates three moles of PhNCS , one by insertion and two by disproportionation, to yield $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)(\mathrm{PhNC})\left(\mathrm{PhNCS}_{2}\right)$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{S}) \mathrm{NPh}\right]$.

Introduction

$\mathrm{Ph}_{2} \mathrm{P}^{-}$and $\mathrm{Ph}_{2} \mathrm{PSS}^{-}$can add to hetero-allene molecules $\mathrm{X}=\mathrm{C}=\mathrm{Y}(\mathrm{X}, \mathrm{Y}=\mathrm{S}, \mathrm{NR}$, 0) by nucleophilic attack at the central C atom to give a large number of heteroallylic derivatives, as shown in Fig. 1.

[^0]TABLE 1
anALYTICAL DATA

No.	Compound	Colour	Found (calcd.) (\%)						Mol. welght
			c	H	0	Cl	P	S	
Id	[$\left.\mathrm{Rh}\left(\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})_{2}\right]_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	dark green	$\begin{gathered} 62.38 \\ (62.44) \end{gathered}$	$\begin{gathered} 4,65 \\ (4.26) \end{gathered}$	$\begin{gathered} 6.45 \\ (6.50) \end{gathered}$		$\begin{gathered} 10.10 \\ (10.08) \end{gathered}$		
IIIc	$\mathbf{R h}\left(\mathrm{SPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$	orange brown	$68,07$ (68.25)	$\begin{gathered} 4.91 \\ (4.78) \end{gathered}$		-	$\begin{gathered} 10,80 \\ (11,02) \end{gathered}$	$\begin{gathered} 3.61 \\ (3.79) \end{gathered}$	827 (844)
IV	$\mathrm{RhCl}(\mathrm{H})\left(\mathrm{Pr}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right) \cdot \mathrm{C}_{6} \mathrm{H}_{6}$	yellow	$\begin{gathered} 68.69 \\ (67.61) \end{gathered}$	$\begin{gathered} 5,19 \\ (4,94) \end{gathered}$	-	$\begin{gathered} 3.69 \\ (3.70) \end{gathered}$	$\begin{gathered} 9.52 \\ (9.70) \end{gathered}$	$\begin{gathered} 3.24 \\ (3.34) \end{gathered}$	$\begin{gathered} 469 b \\ (479) \end{gathered}$
v	IxCl(H)($\left.\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right) \cdot \mathrm{C}_{6} \mathrm{H}_{6}$	yellow	$\begin{gathered} 62.49 \\ (61.80) \end{gathered}$	$\begin{gathered} 4.69 \\ (4.52) \end{gathered}$	-	$\begin{gathered} 3.31 \\ (3.20) \end{gathered}$	$\begin{gathered} 8.15 \\ (8.88) \end{gathered}$	$\begin{gathered} 3.02 \\ (3.05) \end{gathered}$	$\begin{aligned} & 577 b \\ & (574) \end{aligned}$
vi	$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})\left(\mathrm{SPPh}_{2}\right)$	yellow	$\begin{gathered} 67.12 \\ (67.43) \end{gathered}$	$\begin{gathered} 4.71 \\ (1.62) \end{gathered}$	-	-	-	-	-

${ }^{a}$ Mol. weight determined osmometrically in acetone. ${ }^{b}$ Mol. weight determined osmometrically in $\mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{M} / 2$ calc.: 478 for IV, 574 for V .

$\mathrm{R}=\mathrm{Ph}$
$R=M e$

Fig. 1. The unsaturated hetero-allylic anions.

These anions, containing three hetero atoms with coordinating properties, are ambidentate. The complexation of a number of these chelates towards rhodium(I)- and iridium(I)-phosphine complexes are reported in previous papers [1-4]. Complexes of the type $\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}[\mathrm{X}-\mathrm{C}(\mathrm{Z})-\mathrm{Y}]$ and $\mathrm{M}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})[\mathrm{X}-$ $\mathbf{C}(\mathrm{Z})-\mathrm{Y}](\mathrm{M}=\mathrm{Rh}, \mathrm{Ir})$ can be prepared in this way. However, in some cases the complexes are not sufficiently stable to be isolated, and a subsequent reaction occurs in which the heterocumulene is eliminated. In this paper the behaviour of a few of these complexes is discussed. In particular, attention is paid to one of the products, $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{\mathbf{2}}\left(\mathrm{SPPh}_{2}\right)$, resulting from the elimination.

In addition we have synthesized some $\mathbf{M}\left(\mathrm{SPPh}_{2}\right)$ complexes ($\mathrm{M}=\mathrm{R} . \mathrm{h}$, Ir) and investigated their structures. In complexes of $\mathrm{Ph}_{2} \mathrm{PS}^{-}$, this ligand has previously been found to coordinate either end-on via sulfur [9], or to bridge two metal atoms via P and S [10-12]. In this paper we describe a different mode of bonding.

Experimental

IR spectra were measured on a Perkin Elmer 283 spectrophotometer (4000$200 \mathrm{~cm}^{-1}$), mainly in CsI pellets.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Varian XL-1000 FT spectrometer at 40.5 MHz , using the deuterated solvent as internal look. Solutions for NMR measurements were prepared in a glove-box.
C, H and N analyses were carried out at the micro-analytical department of this university. Other elemental analysis and molecular weight determinations were performed by Prof. Dipl.-Ing. Dr. H. Malissa and G. Reuter, Analytische Laboratorien, Elbach über Engelskirchen, West-Germany. Analytical data are given in Table 1.

Reactions were carried out at room-temperature in analytical grade solvents under nitrogen.
$\mathbf{R h C l}\left(\mathrm{PPh}_{3}\right)_{3}[5],\left[\operatorname{IrCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]_{2}[6], \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{N} p-\right.$ tol $) \mathrm{N} p$-tol] and $\mathrm{Kh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{NPh}) \mathrm{O}\right][2], \mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{H}$ [7], and $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{N} p$-tol $) \mathrm{NH} p$-tol and $\mathbf{P h}_{2} \mathbf{P}(\mathbf{S}) \mathrm{C}(\mathrm{O}) \mathrm{NHPh}$ [8] were prepared according to literature procedures.
TABLE 2
IR AND ${ }^{31}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR DATA OF THE INTERMEDIATE COMPLEXES

Complex		$\begin{aligned} & \delta(\text { P-chelate }) \\ & (\mathrm{ppm})^{d} . \end{aligned}$	$\begin{aligned} & 1_{J}\left(R h-P_{\text {chelate }}\right) \\ & (H z) \end{aligned}$	$\begin{aligned} & \nu(\mathrm{C} \equiv 0) \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & \nu(\mathrm{C}=\mathrm{E}) \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$
Ia	$\mathrm{Rh}\left(\mathrm{Prh}_{3}\right)_{2} \mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{NPh}^{(0))^{b}}\right.$				1624s ($\mathrm{L}(\mathrm{C}=0)$)
Ib	$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{NPh}) \mathrm{O}\right]^{c}$	-3.3	108	1872vs	$1640 \mathrm{~m}(\nu)(\mathrm{C}=0)$)
Ic				1912 vs 1987 vs	$1735 \mathrm{~m}\left(1 /\left(\eta^{2}-\mathrm{PhN}=\mathrm{C}=0\right)\right)$
Id	$\left[\mathrm{Rh}\left(\mathrm{Prh}_{3}\right)(\mathrm{CO})_{2}\left(\mathrm{Prh}_{2}\right)\right]_{n}{ }^{\text {b }}$	-46.5	155 (multiplet)	1000 vs 1947 vs	
Ila	$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{N} p\right.$ tol $\left.) \mathrm{Nptol}\right]{ }^{\text {b }}$				1562vs ($\nu(\mathrm{C}=\mathrm{N}$))
Ilb	$\mathrm{Rh}(\mathrm{PPh} 3)(\mathrm{CO})\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{Nptol}) \mathrm{Nptol}\right]^{\text {c }}$			1070vs	1560vs ($\nu(\mathrm{C}=\mathrm{N}$))

Preparation of $\left[R h\left(\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})_{2}\right]_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Id)
On passing CO during 5 minutes through a solution of $0.3 \mathrm{mmol} \operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2^{-}}$ [$\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{N} p$-tol $) \mathrm{N} p$-tol] or $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{NPh}) \mathrm{O}\right.$] in 30 ml benzene the initial orange-yellow colour changed first to yellow and within an hour via brown to dark-green. After a few hours the green precipitate was filtered off, washed with benzene and diethyl ether, and dried in vacuo. Yield: 55\%.

Preparation of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)$ (IIIc)

a) 0.3 mmol of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{N} p$-tol $) \mathrm{NH} p$-tol was added to a solution of 0.3 mmol of $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ in $\mathbf{3 0 ~ m l}$ anhydrous henzene. An equimolar quantity of n-BuLi was then injected. After stirring for 24 hours the mixture was filtered. After precipitation with n-hexane the complex was filtered off, washed with small portions of ethanol and diethyl ether, and dried in vacuo. Yield: 30%.
b) $0.3 \mathrm{mmol} \mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{O}) \mathrm{NHPh}$ was added to a solution of $0.3 \mathrm{mmol} \mathrm{RhCl}-$ $\left(\mathrm{PPh}_{3}\right)_{3}$ in 30 ml benzene. After 20 minutes a small excess of $\mathrm{Et}_{3} \mathrm{~N}$ was added. After 24 hours the $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ was filtered off. The complex was precipitated with n-hexane, filtered off, washed with small portions of ethanol and diethyl ether, and dried in vacuo. Yield: 35\%.
c) $0.3 \mathrm{mmol} \mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{H}$ was added to a solution of $0.3 \mathrm{mmol} \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ in $\mathbf{3 0 ~ m l}$ waterfree benzene. An equimolar quantity of $\mathrm{n}-\mathrm{BuLi}$ was added. After two hours, the complex was precipitated with n-hexane, filtered off, washed with small portions of ethanol and diethyl ether, and dried in vacuo. Yield: 75\%.

Preparation of $\mathrm{Rh}(\mathrm{H})(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right) \cdot \mathrm{C}_{6} \mathrm{H}_{6}(I V)$
$0.3 \mathrm{mmol} \mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{H}$ was added to a solution of $0.3 \mathrm{mmol} \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ in 30 ml benzene. Within 15 minutes the colour changed from red to bright yellow. n-Hexane was added and the precipitate was filtered off, washed with small portions of benzene and diethyl ether and dried in vacuo. Yield: 90%.

Preparation of $\operatorname{Ir}(\mathrm{H})(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right) \cdot \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~V})$
$0.3 \mathrm{mmol} \mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{H}$ was added to a solution of $0.15 \mathrm{mmol}\left[\mathrm{IrCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]_{2}$ and $0.6 \mathrm{mmol} \mathrm{PPh}_{3}$ in 30 ml benzene. In 20 minutes the colour changed from red to yellow. After addition of n-hexane the precipitate was filtered off, washed with small portions of benzene and diethyl ether, and dried in vacuo. Yield: 85\%.

Preparation of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})\left(\mathrm{SPPh}_{2}\right)$ (VI)

CO was passed for 2 minutes through a solution of $\mathrm{Rh}(\mathrm{H})(\mathrm{CI})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{SPPh})_{2}$ in $20 \mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2}$, a yellow precipitate formed during about 30 minutes. After addition of n-hexane the complex was filtered off, washed with ethanol and diethylether, and dried in vacuo. Yield: 90%.

The reaction of $\mathbf{R h}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathbf{P h}_{\mathbf{2}} \mathbf{P C}(\mathbf{N R}) \mathrm{Y}\right](\mathbf{Y}=\mathbf{N} p$-tol, $\mathbf{R}=p$-tol; $\mathbf{Y}=\mathbf{O}, \mathbf{R}=\mathbf{P h})$ with CO

We investigated the reaction between $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{NPh}) \mathrm{O}\right]$ (Ia) and CO by means of IR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. Table 2 gives the relevant

TABLE 3
COMPLEXES AND INTERMEDIATES PRESENT AT DIFFERENT REACTION TIMES

Complex		0 h	0.5 h	2 h	20 h	45 h
Ia	$\mathbf{R h}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{NPh}) \mathrm{O}\right]$	+ +	$+$	-	-	-
Ib	$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{NPh}) \mathrm{O} 1\right.$	-	++	++	+	$+$
ic	$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{2}\right)(\mathrm{PhNCO})$	-	-	-	\bullet	\bullet
Id		-	-	\sim	$+$	4
	free PhNCO	-	-	-	+	++
Colour		yellow	yelloworange	brown	green	green + precipitate of Id
$\delta\left(\mathrm{PPh}_{3}\right)$ (ppm) (free and coordinated)			-11.0	-4.6	-2.0	-0.9

$++>60 \%,+20-60 \%, \sim 5-20 \%$, present in very small quantity, - not present.

IR absorptions and the ${ }^{31} \mathrm{P}$ NMR parameters of the intermediate complexes present in the reaction mixture, and Table 3 shows the amounts of these intermediates as a function of time.

When less than one equivalent CO is introduced into a solution of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}-$ [$\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{NPh}) \mathrm{O}$] in benzene or dichloromethane the yellow-orange $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)$ (CO) $\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{NPh}) \mathrm{O}\right]$ (Ib) is formed by substitution of PPh_{3} by CO. This complex is analogous to the complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})[\mathrm{X}-\mathrm{C}(\mathrm{Z})-\mathrm{Y}]$, described in our earlier papers [2,3]; $\nu(\mathrm{C} \equiv \mathrm{O})$ at $1972 \mathrm{vs} \mathrm{cm}^{-1}$ and $\nu(\mathrm{C}=\mathrm{O})$ at $1640 \mathrm{~m} \mathrm{~cm}^{-1}$ are consistent with the values usually found for this type of compound. The ${ }^{31} P$ NMR spectrum indicates dynamic behaviour due to exchange of free and coordinated PPh_{3}. The PPh_{3} resonance is broad and exhibits no ${ }^{1} J\left(\mathrm{Rh}^{2}-\mathrm{P}\right)$ coupling. ${ }^{1} J\left(\mathrm{Rh}^{-} \mathrm{P}_{\text {chelate }}\right)$ amounts to 108 Hz . Complex Ib defies isolation. It reacts with a second molecule of CO to give $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})_{2}\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{NPh}) \mathrm{O}\right]$; the colour changes slowly via brown to green. In the strained $\mathrm{Rh}-\mathrm{P}-\mathrm{C}-\mathrm{N}$ four membered ring the $\mathrm{P}-\mathrm{C}$ and $\mathrm{Rh}-\mathrm{N}$ bonds are the weakest. By breaking these bonds, i.e. by elimination induced by the second CO molecule, a complex with a side-on coordinated $\mathrm{PhN}=\mathrm{C}=\mathrm{O}$ molecule can be generated (Ic). In the IR spectrum, recorded after two hours, a new absorption is observed at 1735 cm^{-1}, which we assign to $\nu\left(\mathrm{C}=\mathrm{O}\right.$) of the five coordinate intermediate $\mathrm{Rh}\left(\mathrm{PPh}_{2}\right)$ -$\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})_{2}\left(\eta^{2}-\mathrm{PhN}=\mathrm{C}=\mathrm{O}\right)(\mathrm{Ic})$. For the four-coordinate $\mathrm{Rh}(\mathrm{Cl})\left(\mathrm{PCy}_{3}\right)_{2^{-}}$ ($\mathrm{PhN}=\mathrm{C}=\mathrm{O}$) $\nu\left(\mathrm{C}=\mathrm{O}\right.$) was assigned at $1842 \mathrm{~s} \mathrm{~cm}^{-1}$ by Van Gaal et al. [13]. These authors predict a substantial lowering of this frequency in five coordinate $\mathbf{R h}$ complexes. The absorption at $1735 \mathrm{~cm}^{-1}$, observed for Ic, is about $100 \mathrm{~cm}^{-1}$ higher than the reported value for $\nu(\mathrm{C}=\mathrm{O})$ of a [RNC(O)NR] ${ }^{2-}$ fragment, which may result from a coupling of two $\mathrm{Ph}-\mathrm{N}=\mathrm{C}=\mathrm{O}$ entities [14-16], so that the formation of such derivatives can be excluded. Subsequently the η^{2}-coordinated hetero-allene molecule is eliminated from the coordination sphere, as is indicated in the IR spectrum by the formation of free $\mathrm{PhN}=\mathrm{C}=\mathrm{O}$. Fig. 2 shows a possible reaction pathway, as discussed above.

The reaction between $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{N} p\right.$-tol $) \mathrm{N} p$-tol] and CO in benzene proceeds similarly. p tol $\mathrm{N}=\mathrm{C}=\mathrm{N} p$-tol is eliminated and the resulting Rh complex, formed in this reaction, is also Id.

The green compound Id analyses for $\left\{\left[\mathrm{Rh}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right]_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$. We

Ia
a

sutstitution

Ib

Ic

Fig. 2. The probable pathway for the reaction between $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Fin}_{2} \mathrm{PC}(\mathrm{NPh}) \mathrm{O}\right]$ and $\mathbf{C O}$.
suggest a structure as given below, in which n equals 2, but we could not determine the molecular weight because it is insoluble in benzene and decomposes slowly in dichloromethane or chloroform to yield $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ among other products. In Id the rhodium is five coordinate as indicated by $\nu(\mathrm{CO})$ at 1947 and $1900 \mathrm{~cm}^{-1}$:

The reaction of $\mathbf{R h C l}\left(\mathrm{PPh}_{3}\right)_{3}$ with $\mathrm{Ph}_{\mathbf{2}} \mathbf{P}(\mathbf{S}) \mathbf{C}(\mathbf{Y}) \mathrm{NHR}(\mathbf{Y}=\mathbf{N} p$-tol, $\mathrm{R}=p$-tol; $Y=O, R=P h$) in the presence of a base

In earlier papers we reported that the reactions of $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ with the molecules $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{S}) \mathrm{NHPh}$ [2] and $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}(\mathrm{S}) \mathrm{NHPh}$ [3] in the presence of a base, e.g. $\mathrm{Et}_{3} \mathrm{~N}$ gave the stable complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{S}) \mathrm{NPh}\right]$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}(\mathrm{S}) \mathrm{NPh}\right]$, respectively. The ligands are coordinated to Rh by $S(P)$ and S and by $O(P)$ and S in five membered chelate rings.

When $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ is treated with $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{N} p$-tol $) \mathrm{NH} p$-tol and an equimolar quantity $n-B u L i$ or with $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{O}) \mathrm{NHPh}$ in the presence of a small excess of $\mathrm{Et}_{3} \mathrm{~N}$, the complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{Np}\right.$-tol) Np -tol] (IIIa) and $\mathrm{Kh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{NPh}) \mathrm{O}\right]$ (IIIb) are formed as a first intermediate, in which the hetero-allylic ligands coordinate through $S(P)$ and N. After standing for a short time both complexes undergo fairly rapid elimination of the heteroallene molecules p-tol $\mathrm{N}=\mathrm{C}=\mathrm{N} p$-tol and $\mathrm{Ph}-\mathrm{N}=\mathrm{C}=\mathrm{O}$ respectively, as observed by means of IR spectroscopy. The elimination is probably induced by the weak N coordination in the five membered ring and by the weak $\mathrm{P}-\mathrm{C}$ bond of four coordinate three-valent phosphorus to the central atom of the $X=C=Y$ fragment. We suppose the mechanism of these eliminations to be analogous to

Fig. 3. The ${ }^{31}\left[{ }^{1} \mathrm{H}\right]$ NMR spectrum of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)$.
those discussed in the previous section. The compound IIIc, which results from both reactions, analyses for $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)$. IIIc appears to be monomeric in acetone. The absorption at $513 \mathrm{~s} \mathrm{~cm}^{-1}$ in the $I R$ spectrum is assigned to $\nu(P=S)$, which agrees with an involvement of S in the coordination to the metal [2,11,17]. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (see Table 5 and Fig. 3) indicates three inequivalent phosphorus nuclei, which means that the P atom of the $\mathrm{Ph}_{2} \mathrm{PS}^{-}$ moiety is coordinated to Rh . In particular the small value of ${ }^{1} J\left(\mathrm{Rh}-\mathrm{P}_{\mathrm{a}}\right)$ of 119 Hz demonstrates the incorporation of P_{a} into a three membered ring system. We conclude from these facts and from the requirement for four coordination for the $\mathrm{Rh}^{\mathbf{1}}$ center, that the $\mathrm{Ph}_{2} \mathrm{PS}^{-}$ligand is coordinated side-on. Previously, $\mathrm{R}_{2} \mathrm{PS}^{-}$has been reported to complex with transition metals either end-on, through S [9], or by bridging two metal atoms through S and P [10-12], forming binuclear species. IIIc is the first example of a complex in which a

TABLE 4
IR ABSORPTIONS IN cm^{-1}. SPECTRA MEASURED IN CSI PELLETS

Code	Complex	$\nu(C=E)^{6}$	$\nu(\mathrm{P}=\mathrm{S})$	U(M-H)	$\boldsymbol{\nu}(\mathrm{M}-\mathrm{Cl})$
IIIa	$\mathrm{Rh}\left(\mathrm{Prh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{N} p-\mathrm{tol}) \mathrm{Np}\right.$-tol] ${ }^{\text {a }}$	1546s ($\nu(\mathrm{C}=\mathrm{N}$))	521m		
IIIb	$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{NPh}) \mathrm{O}\right]$	1618s ($\nu(C=O$)	512 m		
IIIc	$\mathbf{R h}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)$		513s		
iv	$\mathrm{Rh}(\mathrm{H})(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right) \cdot \mathrm{C}_{6} \mathrm{H}_{6}$		512 s	2118m	262vw
V	$\operatorname{Ir}(\mathrm{H})(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right) \cdot \mathrm{C}_{6} \mathrm{H}_{6}$		511 s	2233m	263vw
VI	$\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)$	1971 vs $\nu(C=O)$	516 m		

[^1]TABLE 5
${ }^{31} \mathrm{H}\left\{\mathbf{1}^{\mathbf{H}}\right\}$ NMR PARAMETERS

Complex	Code	$\delta(\mathrm{Pa})$	$1_{J}(\mathrm{Rh}-\mathrm{Pa})$	$\delta(\mathrm{Pb})$	${ }^{1}(\mathrm{R} \mathbf{h}-\mathrm{Pb})$	$\delta(\mathrm{Pc})$	$1_{J(R h-P c)}$	${ }^{2} \mathrm{~J}(\mathrm{~Pa}-\mathrm{Pb})$	$2 \mathrm{~J}(\mathrm{~Pa}-\mathrm{Pc})$	${ }^{2} \mathrm{~J}(\mathrm{~Pb}-\mathrm{Pc})$
	IIIC	-65.6	119	-44.1	210	-37.6	171	28 cis	246 trans	29 cls
	IV	-49.0	$\begin{gathered} 82 \\ -H)=14 \end{gathered}$	-39.6	$\begin{gathered} 160 \\ 2 \mathrm{~J}(\mathrm{~Pb}-\mathrm{H})=12 \end{gathered}$	-26.5	$\begin{aligned} & 125 \\ & (\mathrm{Pc}-\mathrm{H})=16 \end{aligned}$	20 cls	347 trans	0 cis
	V	-17.5	$(\mathrm{P}-\mathrm{H})$ coup	-4.2 onstant	observed	+2.0		18 cis	309 trans	0 cis

δ in ppm relative to $0=\mathrm{P}(\mathrm{OMc})_{3}(\mathrm{TMP})$, internal reference; upfield shift positive; J in Hz , Solvent: $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
TABLE 6
${ }^{1}$ H NMR SPECTROSCOPIC DATA

δ in ppm relative to TMS . J in Hz . Spectra measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. 4. The structure of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)$.
Fig. 5. The structure of $\mathbf{M}(\mathrm{H})(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)(\mathbf{M}=\mathbf{R h}, \mathrm{Ir})$.
coordinated $\mathrm{R}_{2} \mathrm{PS}^{-}$fragment is coordinated in an η^{2}-mode (see Fig. 4).
In order to support our conclusions we attempted an independent synthesis of $\mathrm{Ph}_{2} \mathrm{PS}^{-}$complexes by direct interaction of $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ with $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{H}$ in benzene. From this reaction the complex $\mathrm{Rh}(\mathrm{H})(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)$ (IV) can be easily obtained. We have also prepared the analogous $\operatorname{Ir}(\mathrm{H})(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)$ (V) from $\operatorname{IrCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)$ and $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{H}$. Molecular weight determinations point to monomeric IV and V. The IR spectra show $\nu(\mathrm{Rh}-\mathrm{H})$ at $2118 \mathrm{~m} \mathrm{~cm}^{-1}$ and $\nu(\mathrm{I}-\mathrm{H})$ at $2233 \mathrm{~m} \mathrm{~cm}{ }^{-1}$, whereas the $\nu(\mathrm{M}-\mathrm{Cl})$ absorptions are assigned at $262 \mathrm{vw} \mathrm{cm}^{-1}$ for IV and $263 \mathrm{vw} \mathrm{cm}{ }^{-1}$ for $\mathrm{V} ; \nu(\mathrm{P}=\mathrm{S})$ is observed at $512 \mathrm{~s} \mathrm{~cm}^{-1}$ for IV and at $511 \mathrm{~s} \mathrm{~cm}^{-1}$ for V . These values indicate again η^{2}-coordination of Ph_{2} PS $^{-}$. Tables 5 and 6 give the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectroscopic data. The ${ }^{31} \mathrm{P}$ NMR parameters of IV and V are in agreement with three inequivalent P atoms. The value of ${ }^{1} J\left(\mathrm{Rh}-\mathrm{P}_{\mathrm{a}}\right)$ of 82 Hz confirms the η^{2}-coordination of the $\mathrm{Ph}_{2} \mathrm{PS}^{-}$moiety. ${ }^{2} J\left(\mathrm{PPh}_{3} \mathrm{~b}-\mathrm{PPh}_{3} \mathrm{c}\right)$ of square planar cis $\mathrm{Rh}^{\mathrm{I}}\left(\mathrm{PPh}_{3}\right)_{2}$ [X-C-(Z)-Y] complexes varies from $35-50 \mathrm{~Hz}$ [2]. The value of ${ }^{2} J\left(\mathrm{PPh}_{3} \mathrm{~b}-\mathrm{PPh}_{3} \mathrm{c}\right)$ of $\mathrm{Rh}^{\mathbf{1}}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{2}-\mathrm{SPPh}_{2}\right)$ is somewhat smaller. We ascribe this to the $\mathrm{P}-\mathrm{Rh}-\mathrm{P}$ angle which is larger than 90°. We draw a parallel with the $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle and ${ }^{2} J(\mathrm{P}-\mathrm{P})$ in $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{2}-\mathrm{A}=\mathrm{B}\right)$ compounds, which have an angle of comparable size and also a small ${ }^{2} J(\mathrm{P}-\mathrm{P})$. A weaker $\mathrm{M}-\eta^{2}$-ligand interaction is expected in the $\mathrm{Rh}^{\mathrm{II}}\left(\mathrm{SPPh}_{2}\right)$ complexes compared with the $\mathrm{Rh}^{\mathbf{I}}\left(\mathrm{SPPh}_{2}\right)$ compounds. This is accompanied with a larger $\mathrm{PPh}_{3}-\mathrm{Rh}-\mathrm{PPh}_{3}$ aperture angle (called the "interligand angle effect" by S. Otsuka [18]) and consequently a still smaller ${ }^{2} \mathrm{~J}$ ($\mathrm{PPh}_{3} \mathrm{~b}-\mathrm{PPh}_{3} \mathrm{c}$) coupling constant. Actually in compounds IV and $\mathrm{V}^{2} J\left(\mathrm{PPh}_{3} \mathrm{~b}-\right.$ $\mathrm{PPh}_{3} \mathrm{c}$) ≈ 0.

In the ${ }^{1} \mathrm{H}$ NMR spectra the hydride signals are observed at $\mathbf{- 1 7 . 6} \mathbf{~ p p m}$ (Rh) and at $\mathbf{- 2 1 . 3} \mathbf{~ p p m}$ (Ir) as quasi-sextets. The values of ${ }^{2} J\left(\mathrm{P}_{\mathrm{i}}-\mathrm{H}\right)(\mathrm{i}=\mathrm{a}, \mathrm{b}, \mathrm{c})$ of IV, read from the ${ }^{1} \mathrm{H}$ NMR spectrum, are slightly smaller than the values from the ${ }^{31} \mathrm{P}$ NMR spectrum. The ${ }^{31} \mathrm{P}$ NMR spectrum of V does not show any ${ }^{2} J\left(\mathrm{P}_{\mathrm{i}}-\mathrm{H}\right)$ couplings, whereas the values from the ${ }^{1} \mathrm{H}$ NMR spectrum are larger than the values of ${ }^{2} J\left(\mathrm{P}_{\mathrm{i}}-\mathrm{H}\right)$ of the analogous Rh complex. The intensity ratio $\operatorname{Int} \mathrm{M}-\mathrm{H} /$ Int. $\mathrm{H}_{\text {arom }}$ indicates that about one molecule $\mathrm{C}_{6} \mathrm{H}_{6}$ must be present in the complexes.

Upon standing for a few days IV is converted into $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathbf{S P P h}_{2}\right)$ by loss of HCl . IIIc can also be prepared directly from $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{LiP}(\mathrm{S}) \mathrm{Ph}_{2}$. We were not able to obtain the good crystals required for an X-ray structure determination of either IV, V or IIIc. However, on the basis of the molecular weight determinations and the spectroscopic features the η^{2}-coordination of the $\mathrm{Ph}_{2} \mathrm{PS}^{-}$ligand in IIIc seems fairly reliable.

Fig. 6. The reaction at elevated temperature between $\mathbf{R h}\left(\mathbf{P P h}_{3}\right)_{2}\left(\mathbf{S P P h}_{2}\right)$ and PhNCS.

On passing CO through a solution of $\mathrm{Rh}(\mathrm{H}) \mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)$, or $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2^{-}}$ (SPPh_{2}), the carbonyl complex $\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)$ (VI) is formed, in which compound the $\mathrm{Ph}_{2} \mathrm{PS}^{-}$group is ccordinated end-on via S to Rh . This compound was previously characterised and reported by Marsala et al. [9]. In the complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{P}-\mathrm{A}\right.$], in which [$\left.\mathrm{Ph}_{2} \mathrm{P}-\mathrm{A}\right]$ represents a hetero-allylic ligand coordinating through P and the hetero atom A, the $\mathbf{P P h}_{3}$ ligand trans to A, i.e. the phosphine which experiences the smallest trans-influence, is displaced by CO. In the present case on the contrary, $\mathrm{P}_{\text {chelate }}$ is substituted, and CO is probably trans to $\mathrm{Ph}_{2} \mathrm{PS}^{-}$.

Insertion of $\mathbf{P h}-\mathbf{N}=\mathbf{C}=\mathbf{S}$ in the $\mathbf{P h}_{2} \mathbf{P M S}$ system

$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SPPh}_{2}\right)$ (IIIc) is formed from $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{Np}\right.$-tol $) \mathrm{N} p$-tol $]$ or $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{NPh}) \mathrm{O}\right]$ by elimination of p-tolN $=\mathrm{C}=\mathrm{N} p$-tol or $\mathrm{PhN}=$ $C=O$, respectively. We have already remarked that this tendency to elimination is probably connected with the weak N coordination of the hetero-allylic ligand. Since e.g. $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{S}) \mathrm{NPh}\right]$ is a stable complex, it should be possible to synthesize this complex from IIIc by insertion of Ph-N=C=S. We carried out this reaction by refluxing a mixture of IIIc and a large excess of $\mathrm{Ph}-\mathrm{N}=\mathrm{C}=\mathrm{S}$ in benzene during two hours. From the resulting mixture $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)(\mathrm{PhNC})$ $\left(\mathrm{PhNCS}_{2}\right)\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{S}) \mathrm{NPh}\right]$ can be isolated as the main product (see Fig. 6). We previously prepared this compound by the reaction between $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{Ph}_{2^{-}}\right.$ $\mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{S}) \mathrm{NPh}]$ and an excess of $\mathrm{Ph}-\mathrm{N}=\mathrm{C}=\mathrm{S}$, in which the hetero-allene molecules undergo a disproportionation [191. In the present reaction insertion occurs together with disproportionation. Experiments with varying ratios of $\mathrm{Ph}-\mathrm{N}=\mathrm{C}=\mathrm{S} / \mathrm{Rh}$ revealed no preference for either insertion or disproportionation.

The overall reaction is the incorporation of three molecules of $\mathrm{Ph}-\mathrm{N}=\mathbf{C = S}$. The reaction is well understood in view of the knowledge of the insertion and disproportionation properties of hetero-allenes.

Acknowledgements

The author wishes to thank Prof. Dr. Ir. J.J. Steggerda, Dr. H.L.M. van Gaal and Dr. J. Willemse for stimulating discussions, Mr. J. van Kessel for recording the ${ }^{31} \mathrm{P}$ NMR spectra, Mr. H. Brinkhof for measuring the ${ }^{1} \mathrm{H}$ NMR spectra and Mr. P.J.J. Koonen for performing C, H and N analyses.

References

1 D.H.M.W. Thewissen and A.W. Gal, Proceedings of the Conference on Rhodium in homogeneous Catalysis, Veszprém, 1978, pp. 6-13.
2 D.H.W.M. Thewissen, H.P.M.M. Ambrosius, H.L.M. van Gaal and J.J. Steggerda, J. Organometal. Chem., 192 (1980) 101.
3 A.W. Gal, J.W. Gosselink and F.A. Vollenbroek, J. Organometal. Chem., 142 (1977) 357.
4 A.W. Gal and F.H.A. Bolder, J. Organometal. Chem., 142 (1977) 375.
5 J.A. Osborn and G. Wilkinson, Inorg. Synth., 10 (1967) 67.
6 A. van der Ent and A.L. Onderdelinden, Inorg. Synth., 14 (1973) 94.
7 G. Peters, J. Amer. Chem. Soc., 82 (1960) 4751.
5 D.H.M.W. Thewissen and H.P.M.M. Ambrosius, Rec. Trav. Chim. Pays-Bas. to be published.
9 V. Marsala, F. Faraone and P. Piraino, J. Organometal. Chem., 133 (1977) 301.
10 K.P. Wagner, R.W. Hess, F.M. Treichel and J.C. Calabrese, Inorg. Chem., 14 (1975) 1121.
11 E. Lindner and B. Schilling, Chem. Ber., 110 (1977) 3889.
12 E. Lindner and H. Dreher. J. Organometal. Chem., 105 (1976) 85.
13 H.L.M. van Gaal and J.P.J. Verlaan, J. Organometal. Chem., 137 (1977) 93.
14 T.A. Manuel, Inorg. Chem., 3 (1964) 1703.
15 J.A.J. Jarvis, B.E. Job, B.T. Kilbourn, R.H.B. Mais, P.G. Owston and P.F. Todd, J. Chem. Soc. Chem. Commun., (1967) 1149.
16 S.D. Robinson and A. Sahajpel. J. Organometal. Chem.. 164 (1979) C9.
17 E. Lindner and W.P. Meyer, J. Organometal. Chem., 67 (1974) 277.
18 S. Otsuka, Proceedings IXth ICOMC, Dijon, 1979, p. S14.
19 D.H.M.W. Thewissen and H.L.M. van Gaal, J. Organometal. Chem., 172 (1979) 69.

[^0]: * For part II see ref. 2.
 ** Present address: O.C.I., T.N.O., Croesestrat 79. Utrecht, The Netherlands.

[^1]: ${ }^{a}$ Measured in $\mathrm{C}_{6} \mathrm{H}_{6}$ solution. ${ }^{\boldsymbol{b}} \mathrm{E}$ represents the exocyclic hetero atom.

